How to Hook a Bandwidth Crook

Monday, July 25, 2016 @ 04:07 PM gHale


A system is in development that allows cellphone and laptop users to help detect and locate someone stealing bandwidth on radio frequency waves.

A team from the University of Utah School of Computing received a three-year, $1 million grant from the National Science Foundation (NSF) to devise the system to help tighten security of the nation’s radio spectrum, a valuable resource used for satellite communication and for commercial, public safety and military applications.

RELATED STORIES
Light-based Wireless Communications Possible
Exxon’s Whale of Drone Idea
Security Risks in 3-D Printing
Smartphone App Manages Privacy Preferences

University of Utah School of Computing Professor Sneha Kumar Kasera’s grant aligns with the Advanced Wireless Research Initiative unveiled July 15 by the White House and led by NSF. The initiative researches new wireless technologies, applications and services to make wireless communication faster, more responsive and more robust. NSF will invest more than $400 million in support of this initiative over the next seven years, according to NSF Program Director Thyaga Nandagopal.

“Fundamental research on advanced wireless will be transformative and take us beyond the current and next generation of wireless — beyond what has been envisioned thus far,” said Jim Kurose, head of Computer and Information Science and Engineering at NSF.

The problem of stealing radio frequencies for private use — what Kasera calls “unauthorized spectrum use” — can become much more serious when more cellphones, laptops and other mobile devices utilize what’s called “software-defined radio” technology, a fast-rising technology where you can change the functions of a radio device by simply updating its software instead of making more costly hardware changes.

Once more devices turn to this technology for better flexibility, it is likely hackers then will use it to create software to steal radio bandwidth, or worse, create malware for phones and computers meant to disrupt radio and satellite communications. For example, imagine terrorists using malware to attack software-defined radios that clog up emergency-services radio frequencies in the time of a crisis.
“It’s not fully understood yet as to what scale this problem currently exists. But this is in anticipation that with more software-defined radios this will become a much bigger problem,” Kasera said. “Once you have that software-defined radio capability, hackers will write all kinds of bad apps for them.”

Kasera created an idea that everyday users of cellphones and laptops could aid authorities in catching these kinds of hackers.

He is researching a system in which people could download an app or piece of software for their devices that can detect if an unauthorized radio frequency is being used and where the location of the offender might be.

All devices with built-in radios can receive signals within a certain frequency range. When someone with a phone or laptop briefly runs Kasera’s software, it could tell authorities if a hacker is using unauthorized bandwidth of a certain frequency range and at what strength it’s being transmitted. If enough people in the area are simultaneously running the program, the system also could help locate the thief by triangulating the signal.

Currently, the Federal Communications Commission has an enforcement bureau that detects unauthorized use of radio frequencies whenever it receives complaints, Kasera said, but it’s an arduous manual process, and they do not have enough resources to cover all areas.

“We thought that there should be a better way of doing this, and then we started thinking of ideas about crowdsourcing,” he said. “Our goal is to be able to monitor for unauthorized use 100 percent of the time, cover 100 percent of the area and cover 100 percent of the frequency, and that can only be achieved at that scale through crowdsourcing.”

Kasera’s co-researchers include University of Utah electrical and computer engineering associate professor Neal Patwari; School of Computing assistant professor Jeff M. Phillips; researcher Kurt Derr with the Idaho National Laboratory; and Milind Buddhikot, distinguished member of technical staff with Nokia Bell Labs in New Jersey.