Kirigami can Improve Smart Clothing

Wednesday, April 4, 2018 @ 03:04 PM gHale

The images above, from the top left moving clockwise, shows an electronic circuit being increasingly stretched.
Photos by Shenqiang Ren

Electronic components don’t stretch easily, but that may soon change as new technology is in development that is a variation of origami.

Kirigami has inspired its efforts to build malleable electronic circuits that can create tiny sheets of strong yet bendable electronic materials made of select polymers and nanowires. This technology could lead to improvements in smart clothing, electronic skin and other applications that require pliable circuitry, said researchers at the University of Buffalo.

RELATED STORIES
‘Dual-Comb’ Boosts Methane Leak Detection
Living Pipeline Leak Detector
Using Headphones, Speakers to Steal Info
Super Bowl Sunday Stays Safe, Secure

“Traditional electronics, like the printed circuit boards in tablets and other electronic devices, are rigid. That’s not a good match for the human body, which is full of bends and curves, especially when we are moving, said Shenqiang Ren, professor in the Department of Mechanical and Aerospace Engineering and lead author of a paper on the subject.

“We examined the design principles behind kirigami, which is an efficient and beautiful art form, and applied them to our work to develop a much stronger and stretchable conductor of power,” said Ren, also a member of UB’s RENEW Institute, which is dedicated to solving complex environmental problems.

The study, which includes computational modeling contributions from Temple University researchers, employs nanoconfinement engineering and strain engineering (a strategy in semiconductor manufacturing used to boost device performance).

Without kirigami, the polymer – known as PthTFB — can be deformed up to 6 percent from its original shape without changing its electronic conductivity. With kirigami, the polymer can stretch up to 2,000 percent. Also, the conductivity of PthTFB with kirigami increases by three orders of magnitude.

The advancement has many potential applications, including electronic skin (thin electronic material that mimics human skin, often used in robotic and health applications), bendable display screens and electronic paper.

But its most useful application could be in smart clothing, a market that analysts said could reach $4 billion by 2024.



Leave a Reply

You must be logged in to post a comment.