New Model Means More Oil

Thursday, May 24, 2012 @ 01:05 PM gHale


If they can understand the different pore sizes and spatial patterns in strata, geologists can help drillers gain more production from underground oil reservoirs and water aquifers.

That would also mean a more efficient use of potential underground carbon storage sites, and better evaluations of the possible movement of radionuclides in nuclear waste depositories to determine how well they can isolate the waste.

RELATED STORIES
Safety Alert: Measuring Pipeline Bubbles
Nano Sponge Sops Up Oil Spills
Biometric Security made Easier
Nano Radiation Sensor on Tap

This whole new understanding comes from a new Sandia National Laboratories modeling study which contradicts a long-held belief of geologists that pore sizes and chemical compositions are uniform throughout a given strata, the horizontal slices of sedimentary rock.

“I think our paper for the first time provides a reasonable explanation for the origin of patterns,” said Sandia lead researcher Yifeng Wang. “We found we could predict the variations in pores as well as the heterogeneity of a reservoir.”

Wang’s analysis was able to match the field observations published in 2006 by second author David Budd, professor of geological sciences at the University of Colorado at Boulder.

Budd said Wang put together a session at the 2010 annual meeting of the Geochemical Society at which Budd presented field studies of porosity and chemical composition. “He recognized that the data I showed could be explained by stress-induced chemical waves. He subsequently developed the numerical model to test his idea. Then we used the 2006 data set to demonstrate the correspondence between his model’s outcomes and the field data.”

A chemical wave in this context relies upon mineral dissolution and precipitation, powered by geologic stress, to penetrate surrounding material, just as an ocean wave powered by the moon’s gravitational pull rides up on a beach. Ocean waves shift sand; Wang found chemical waves modify the spatial distribution of rock porosity.

A chemical wave is “like water rippling,” Wang said. “The concentration of a chemical species varies periodically in space (a standing wave) or sometime such variations propagate through space (a traveling wave).

“The one we revealed in dolomite (a type of sedimentary rock) may be the largest chemical wave ever known, because no one has thought to look for chemical waves in strata. It occurred on the scale of meters to tens of meters and propagated between a hundred to a thousand years.” Chemical waves usually undergo observation on much smaller scale in laboratories.

Using the chemical wave concept and well-known equations for material stresses, Wang formulated a mathematical model.

“The remarkable thing is that the model predictions match very well with many seemingly uncorrelated observations. The model predictions not only match the observed porosity patterns, but also match very well with chemical and isotopic signatures. This is the power of mathematical analysis,” Wang said.

Wang’s model isn’t large enough yet to derive equations meaningful to an entire reservoir — a process called upscaling. Still, he said, “another way to capture this variability is to use mathematical analysis to derive upscaled flow-transport equations. This work is on the way.”

The work may help dispel geologists’ belief each layer of sedimentary rock, deposited over eons, is more or less homogenous in porosity and composition. That is why they thought a single core sample obtained from a given depth chemically represented the entire layer.

Budd’s findings showed horizontal variations within a layer of sedimentary rock could be quite significant — in some cases, as large as vertical variations. This would affect not only the amount of fluid stored or percolating through a rock but the amount of pressure needed to shoot liquids to Earth’s surface. No one knew why these variations occurred, nor had anyone measured their magnitude.

The problem has always been how to extend horizontally the knowledge gained from vertical bore holes that may be 1,300 feet apart, Budd said.

Wang’s model also reveals important information about Earth’s geological changes.

“Even the shape of a variation may reveal important facts about past times,” he said. “Our work may have geologists rethinking their method of field sampling and their interpretation of data about Earth’s evolution.”



Leave a Reply

You must be logged in to post a comment.