Random Security at Quantum Level

Wednesday, May 31, 2017 @ 02:05 PM gHale


Researchers can generate perfectly random numbers by using the quantum properties of light.

Whenever we need to communicate in secret, a cryptographic key is needed. For this key to work, it must consist of numbers chosen at random without any structure.

The catch is, though, it is extremely difficult to choose without creating any bias, even by hitting the keyboard chaotically. To solve this problem, researchers from the University of Geneva (UNIGE), Switzerland, developed a new random numbers generator based on the principles of quantum physics.

RELATED STORIES
Post-Quantum Cryptography on Contactless Chip
Intentional Flaws Prevent 3-D Printing Hacks
Solar can Combat Grid Security Risks
Big Data Meets Nuclear Power

This physical theory, full of phenomena that run counter to our common sense, shows that certain physical events occur perfectly at random, making them impossible to predict.

Unlike previous methods, the new system allows the user to verify the reliability of the random numbers it generates in real time. This work will greatly complicate the tasks of hackers who can no longer exploit bias resulting from human fallibility or possible imperfections in existing devices.

To generate a good cryptographic key, one must alternate randomly between 0’s and 1’s, the values of the bits which form the basic unit of information in digital devices like computers. However, when we humans try to generate a sequence of numbers which we believe to be random, it always ends up being partly predictable, as revealed by behavioral studies and statistics.

In addition, apart from having a poor grasp on randomness, the human brain is also much slower than machines, which can output millions of numbers per second. This gives hackers an opportunity to crack passwords, which the user thought to be safe. 

Enter Quantum Physics
For the past twenty years, researchers have turned to quantum physics, characterized by its completely random and unpredictable processes, for developing new cryptographic techniques, and in particular the generation of random numbers.

“Send a photon (a particle of light) onto a semi-transparent mirror. Either it gets transmitted through the mirror, or it gets reflected. But it is impossible, even in principle, to predict beforehand which of these two behaviors it will adopt. This is the basic idea behind quantum random number generation” said Nicolas Brunner, professor at the Department of Applied Physics at the Faculty of Science of UNIGE and responsible for the theoretical aspects of the new research. 

Powerful quantum random number generators are available today on a commercial basis. However, one limitation of existing devices is it is impossible for the user to independently verify the numbers generated are in fact genuinely random and not, for example, composed of digits of π. The user must trust the device (and so its manufacturer) to function correctly, even after years of use. So, it makes sense to ask if current systems could be improved from this point of view.

“We wanted to create a device which can be continuously tested to ensure it functions correctly at all times and thus guarantee that the random numbers generated are reliable” Brunner said. To achieve this, the UNIGE physicists have developed a “self-testing” quantum random number generator, which allows the user to verify in real time the apparatus performs optimally and delivers unbiased random numbers.

Guaranteeing Randomness
“The generator should solve a task for which we have calibrated it. If the tasks is solved correctly, the output numbers are guaranteed to be random. If the apparatus does not find the correct solution, randomness is not guaranteed, and the user should then recalibrate the device. This avoids the risk of using numbers with little (or no) randomness for example to generate passwords, which hacker could then crack,” said professor Hugo Zbinden. He has been responsible for the experimental aspects of the research. Indeed, the new generator allows to measure precisely the quality of the output random numbers. Perfectly random numbers can then be distilled and used for security applications, such as generating passwords which are safe against hacking.

The self-testing quantum random number generator will allow the security of passwords and cryptographic protocols to be increased yet another notch. Here, security is guaranteed by the laws of physics themselves, and not by the hackers’ technological limitations. This research, conducted by physicists at the UNIGE allows for a better understanding of quantum randomness as well as its use in information technology.



Leave a Reply

You must be logged in to post a comment.