Rescue Robot via Remote Control

Wednesday, December 14, 2016 @ 03:12 PM gHale


Rescue robot with a tethered drone.

Rescue robot with a tethered drone.

A prototype construction robot is in development that can work in disaster relief situations.

This prototype has the potential to drastically improve operability and mobility compared to conventional construction machines, according to a group of Japanese researchers who developed the robot.

RELATED STORIES
Online Mapping of Disaster Areas
Dog’s Schnoz a Boost to Security
‘Listening’ to Bridge Signals to Find Damage
Converting Waste Hot Water to Energy

As part of the Impulsing Paradigm Challenge through Disruptive Technologies Program (ImPACT)’s Tough Robotics Challenge Program, a group of research leaders at Osaka University, Kobe University, Tohoku University, The University of Tokyo, and Tokyo Institute of Technology developed construction robots for disaster relief in order to solve various challenges of conventional construction machines used in such situations.

Using a prototype machine with elemental technologies under development, verification tests ended up performed on places that represented disaster sites, and researchers were able to ascertain a certain level of performance.

The prototype looks like an ordinary hydraulic excavator, but it has the following elemental technologies:
• Quickly and stably controlling heavy power machines with high inertia by achieving target values regarding location and speed through fine tuning and by controlling pressures on a cylinder at high speeds.

• Estimating external load of multiple degree of freedom (DOF) hydraulically-driven robot from oil pressure of each hydraulic cylinder. The estimated force will be used for force control or force feedback to the operator of tele-operated rescue robots.

• Measuring high frequency vibration by a force sensor installed at the forearm of the robot and giving the operator vibrotactile feedback.

• Flying a multi-rotor unmanned aircraft vehicle UAV (“drone”) to the place of the operator’s choice and obtaining image information. Long flights and pin-point landing of the drone are available due to power supply through electric lines and a power-feeding helipad for tethering the drone.

• Presenting the operator images of an overhead view from an arbitrary place by using 4 fish-eye cameras mounted on the robot in real time so the operator can assess the area surrounding the robot.

• Using a far-infrared ray camera capable of viewing with long-wavelength light so that the operator can operate the robot while assessing the situation even under bad weather conditions like fog.

In addition, this group is developing several useful elemental technologies and making efforts to improve their technical performance. They are also developing new robots with a double rotation mechanism and double arms with the purpose of achieving higher operability and terrain adaptability.



Leave a Reply

You must be logged in to post a comment.