Sticky Tape Leads to Thin Solar Cells

Tuesday, July 21, 2015 @ 11:07 AM gHale

There may soon be a way to use thin layers of phosphorus to create ultrathin and ultralight solar cells and LEDs.

The magic lies with using sticky tape to create single-atom thick layers, termed phosphorene, in the same simple way as the discovery of graphene.

Finding Wind Farms Quicker, Cheaper
Unlocking Lignin for Biofuel Boost
Modified Switchgrass Means Better Biofuel
Converting Algal Oil to Fuels

Unlike graphene, phosphorene is a semiconductor, like silicon, which is the basis of current electronics technology.

“Because phosphorene is so thin and light, it creates possibilities for making lots of interesting devices, such as LEDs or solar cells,” said lead researcher Dr. Yuerui (Larry) Lu, from The Australian National University (ANU). “It shows very promising light emission properties.”

The team created phosphorene by repeatedly using sticky tape to peel thinner and thinner layers of crystals from the black crystalline form of phosphorus.

As well as creating much thinner and lighter semiconductors than silicon, phosphorene has light emission properties that vary widely with the thickness of the layers, which enables much more flexibility for manufacturing.

“This property has never been reported before in any other material,” said Lu, from ANU College of Engineering and Computer Science. “By changing the number of layers we can tightly control the band gap, which determines the material’s properties, such as the color of LED it would make.

“You can see quite clearly under the microscope the different colors of the sample, which tells you how many layers are there,” Lu said.

Lu’s team found the optical gap for monolayer phosphorene was 1.75 electron volts, corresponding to red light of a wavelength of 700 nanometers. As they added in more layers, the optical gap decreased. For instance, for five layers, the optical gap value was 0.8 electron volts, an infrared wavelength of 1550 nanometers. For very thick layers, the value was around 0.3 electron volts, a mid-infrared wavelength of around 3.5 microns.

The behavior of phosphorene in thin layers is superior to silicon, Lu said.

“Phosphorene’s surface states are minimized, unlike silicon, whose surface states are serious and prevent it being used in such a thin state,” he said.