Testing Fuel Systems by Math

Monday, March 18, 2013 @ 07:03 PM gHale


Engineers will be able to design better fuel systems for everything from motorcycles to rockets faster and more inexpensively because of a new mathematical fuels model.

The fuels model will increase the pace of injector design for greater efficiency, better gas mileage and more horsepower in cars and trucks, said researchers at the University of Alabama in Huntsville.

RELATED STORIES
Seeking to Hike Biofuel Efficiency
Duckweed to the Biofuel Rescue
Synching Up a Reliable Power Grid
New Way to Harvest Sun Energy

But the beauty of this approach is it works for all combustion processes and fuels, from mopeds to missiles and from gasoline, ethanol and diesel fuel to decane/hexadecane.

Instead of costly real-world modeling, which requires the design, machining and production of parts before they can be bench tested and performance modeled, the mathematical model lets designers test their ideas on computers first. The model also brings research into alternative fuels into the computer before it needs to be prototyped.

“That’s the reason we are so excited about this research, is that it cuts down on the expense of the calculations to model fuel efficiency,” said Dr. Chien-Pin Chen, chair of UAHuntsville’s chemical engineering department, who along with graduate student Omid Samimi Abianeh wrote a research paper on the fuels model.

“If somebody wants to do a numerical diagram of an internal combustion engine – and I’m a numbers guy – the first thing they need to study is the fuel,” Chen said. But because fuel is a highly complex substance, a researcher would need a supercomputer to do that. Gasoline, for example, contains hundreds of substances with different evaporation rates and ignition points.

“So we designed a surrogate fuel with three components instead of hundreds,” Chen said. “It performs the same but it is not as complex to study.” While it can actually be a physical substance, in the model the fuel is only a math entity. “That model is our contribution,” he said, and it works across all fuels, from rocket fuel to common ethanol/gasoline mixtures and the new E85 ethanol fuels.

In modern engines, injectors spray fuel into the combustion chamber at precisely timed intervals for combustion. The size, composition, behavior, temperature and pressure of those droplets all determine how efficiently the fuel will perform, Chen said. The model can demonstrate how fuel droplets from different injector designs will behave as far as their evaporation characteristics and combustion efficiency in the combustion chamber. The National Institute of Standards and Technology certified all fuel types and that was the database used to validate the research results, Chen said.

“We are already changing the injector designs,” Chen said, adding the fuels model allows engineers to better answer the question, “What is the best injector design to give you the best flame propagation?”

The new model has led to additional research in fuel turbulence, the rich to lean swirl of fuel in a combustion chamber that provides for even flame propagation.

In car and truck engines, it is important that fuel burns and expands in a controlled fashion rather than exploding. Explosions cause detonation, that pinging or clunking sound drivers sometimes hear that leads to premature engine wear and failure.

To accomplish even propagation, modern gasoline engines layer the fuel so it has a higher density in relation to the available air (a rich mixture) near the spark plug and swirls to a lower density (a lean mixture) near the top of the piston. The plug’s spark can more easily start combustion in the rich fuel, and the leaner mix underneath ends up more efficiently burned. Injector nozzle design and placement in the chamber are both important to this process.

“The long-term goal,” Dr. Chen said, “is to find a way to burn fuel more efficiently for more power and cleaner combustion.”



Leave a Reply

You must be logged in to post a comment.